DANIEL RAKITA

CURRICULUM VITAE, NOVEMBER 2021

PhD Candidate University of Wisconsin–Madison Department of Computer Sciences 1210 W Dayton St, Madison, WI 53726 USA <u>rakita@cs.wisc.edu</u>, <u>Personal website</u>, <u>Google Scholar</u>

RESEARCH INTERESTS

My research consists of two primary threads: (1) formulating **robot motion synthesis algorithms** that allow robots to smoothly, safely, and accurately move around even complex or cluttered environments in **real-time**; and (2) designing and validating **robot control interfaces** that are **intuitive and easy to use**, even for novice users with no expertise in robotics.

EDUCATION

	in Computer Science , University of Wisconsin-Madison rs: Michael Gleicher and Bilge Mutlu	2015-Current
Maste	rs of Computer Science, University of Wisconsin-Madison	2015-2017
	rgraduate work in computer science , University of Isin-Madison	2013-2015
	lor of Music in Performance , Indiana University-Bloomington School of Music	2008-2012
AWA	RDS & HONORS	
[A10]	Outstanding Reviewer Award , Selected by IROS Conference Paper Review Board, Top 4 of 3,942	2021
[A9]	Cisco Graduate Student Fellowship Recipient, UW-Madison	2021
[A8]	Three Minute Thesis Competition Finalist, UW-Madison	2021
[A7]	Best Paper Award Finalist , ACM/IEEE Conference on Human-Robo Interaction (HRI)	t 2020
[A6]	Microsoft PhD Fellowship Recipient	2019
[A5]	Best Paper Award Winner , ACM/IEEE Conference on Human-Robo Interaction (HRI), Top 4 of 206 papers	t 2018

[A4]	NSF Graduate Research Fellowship Program Honorable Mention	2017
[A3]	HRI Pioneer, accepted to the selective workshop held at HRI 2017	2017
[A2]	Best Paper Award Nominee , IEEE Symposium on Robot and Human Interactive Communication (RO-MAN)	2017
[A1]	ACM SIGGRAPH Student Research Competition 1st Place	2015

JOURNAL ARTICLES

2022

[J6]	Chamzas, C., Quintero, C., Kingston, Z., Orthey, A., Rakita, D., Gleicher,
	M., Toussaint, M., Kavraki, L. 2022. MOTIONBENCHMAKER: A Tool to
	Generate and Benchmark Motion Planning Datasets. Robotics and
	Automation Letters (RA-L). In Proceedings International Conference on
	Robotics and Automation (ICRA). [To Appear]

2021

[J5]	Rakita, D., Mutlu, B., Gleicher, M. 2021. Single Query Path Planning using
	Sample Efficient Probability Informed Trees. <i>Robotics and Automation</i>
	Letters (RA-L). In Proceedings International Conference on Robotics and
	Automation (ICRA).

2020

[J4]	Rakita, D., Mutlu, B., Gleicher, M. 2020. An Analysis of RelaxedIK: An
	Optimization-Based Framework for Generating Accurate and Feasible Robot
	Arm Motions. Autonomous Robotics (AURO).

2019

[J3]	Rakita, D., Mutlu, B., Gleicher, M., and Hiatt, L. 2019.
	Shared-Control-Based Bimanual Robot Manipulation. Science Robotics.

2018

[J2]	Bodden, C., Rakita, D. , Mutlu, B., and Gleicher, M. 2018. A Flexible
	Optimization-Based Method for Synthesizing Intent-Expressive Robot Arm
	Motion. The International Journal of Robotics Research (IJRR). SAGE.

2016

[J1]	Pejsa, T., Rakita , D. , Mutlu, B., & Gleicher, M. 2016. Authoring directed
	gaze for full-body motion capture. ACM Transactions on Graphics, 35(6),
	1–11. Proceedings SIGGRAPH ASIA 2016, December 2016.

REFEREED FULL CONFERENCE PAPERS

2022

[C16] **Rakita, D.**, Mutlu, B., and Gleicher, M. 2022. Proxima: An Approach for Time or Accuracy Budgeted Collision Proximity Queries. *Robotics: Science and Systems* (RSS).

2021

- [C15] **Rakita, D.**, Shi, H., Mutlu, B., and Gleicher, M. 2021. CollisionIK: A Per-Instant Pose Optimization Method for Generating Robot Motions with Environment Collision Avoidance. *International Conference on Robotics and Automation* (ICRA).
- [C14] Rakita, D., Mutlu, B., and Gleicher, M. 2021. Strobe: An Acceleration Meta-algorithm for Optimizing Robot Paths using Concurrent Interleaved Sub-Epoch Pods. *International Conference on Robotics and Automation* (ICRA).

2020

- [C13] Rakita, D., Mutlu, B., and Gleicher, M. 2020. Effects of Onset Latency and Robot Speed Delays on Mimicry-Control Teleoperation. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE (Acceptance rate 24%)
- [C12] Praveena, P., Rakita, D., Mutlu, B., and Gleicher, M. 2020. Supporting Perception of Weight through Motion-induced Sensory Conflicts in Robot Teleoperation. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE. (Acceptance rate 24%) [Best Paper Nominee]

2019

- [C11] **Rakita, D.**, Mutlu, B., and Gleicher, M. 2019. Remote Telemanipulation with Adapting Viewpoints in Visually Complex Environments. *Robotics: Science and Systems* (RSS).
- [C10] Rakita, D., Mutlu, B., and Gleicher, M. 2019. Stampede: A Discrete-Optimization Method for Solving Pathwise-Inverse Kinematics. *International Conference on Robotics and Automation* (ICRA).
- [C9] Praveena, P., **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2019. User-Guided Offline Synthesis of Robot Arm Motion from 6- DoF Paths. *International Conference on Robotics and Automation* (ICRA).

2018

[C8] **Rakita, D.**, Mutlu, B., and Gleicher, M. 2018. RelaxedIK: Real-time Synthesis of Accurate and Feasible Robot Arm Motion. *Robotics: Science and Systems* (RSS). *[Invited to Special Issue]*

- [C7] Rakita, D., Mutlu, B., and Gleicher, M. 2018. An Autonomous Dynamic Camera Method for Effective Remote Teleoperation. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE. (Acceptance rate 23%) [Best Paper Award Winner]
- [C6] Rakita, D., Mutlu, B., Gleicher, M., and Hiatt, L. 2018. Shared Dynamic Curves: A Shared-Control Telemanipulation Method for Motor Task Training. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE. (Acceptance rate 23%)

2017

- [C5] Rakita, D., Mutlu, B., and Gleicher, M. 2017. A Motion Retargeting Method for Effective Mimicry-based Teleoperation of Robot Arms. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE. (Acceptance rate 50/211)
- [C4] Liu, O., Rakita, D., Mutlu, B., and Gleicher, M. 2017. Understanding Human-Robot Interaction in Virtual Reality. *RO-MAN* 2017-The IEEE International Symposium on Robot and Human Interactive Communication. IEEE.
- [C3] Subramani, G., Rakita, D., Wang H., Zinn, M., Gleicher, M. 2017. Recognizing Actions during Tactile Manipulations through Force Sensing. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ.

2016

- [C2] Rakita, D., Mutlu, B., and Gleicher, M. 2016. Motion Synopsis for Robot Arm Trajectories. *RO-MAN* 2016-The 25th IEEE International Symposium on Robot and Human Interactive Communication. IEEE. (Acceptance rate 44%)
- [C1] Bodden, C., Rakita, D., Mutlu, B., and Gleicher, M. 2016. Evaluating Intent-Expressive Robot Arm Motion. RO-MAN 2016-The 25th IEEE
 Mathematical Symposium on Robot and Human Interactive Communication. IEEE. (Acceptance rate 44%) [Best Paper Nominee]

REFEREED SHORT CONFERENCE PAPERS

2017

[S2] **Rakita, D.** 2017. Methods for Effective Mimicry-based Teleoperation of Robot Arms. *International Conference on Human-Robot Interaction* (HRI) Pioneers Workshop. 2015

Rakita, D., Pejsa, T., Mutlu, B., and Gleicher, M. 2015. Inferring Gaze Shifts from Captured Body Motion. SIGGRAPH 2015 Poster Proceedings 77, 77:1. *[1st Place – ACM Student Research Competition]*

THESES

2017

[T1] Rakita, D., Mutlu, B., and Gleicher, M. 2017. Relaxed-IK Solver: A Framework for Robot Arm Importance-based Inverse Kinematics. University of Wisconsin-Madison Department of Computer Sciences, Masters Tech Report.

FUNDING

Cisco Graduate Student Fellowship, one year PhD tuition and stipend	2021-2022
Microsoft PhD Fellowship, \$84,000 for tuition, stipend, and travel funds	2019-2020
WORK AND RESEARCH EXPERIENCE	
Graduate Researcher. University of Wisconsin-Madison Visual Computing	2015-Current

Graduate Researcher, University of Wisconsin-Madison Visual Computing2015-CurrentLab and Human-Computer Interaction LabAdvised by Michael Gleicher and Bilge Mutlu2018, 2019NREIP Researcher, Naval Research Lab, Washington, D.C.,2018, 2019Advised by Laura Hiatt2018, 2019

Undergraduate Researcher, University of Wisconsin-Madison Visual 2014-2015 Computing Lab and Human-Computer Interaction Lab

IT / System Administrator, Icecube Neutrino Observatory, University of 2013-2015 Wisconsin-Madison

TEACHING EXPERIENCE

Guest Lecturer , CS/ Psych 770 Human-Computer Interaction. University of Wisconsin-Madison.	Spring 2020
Guest Lecturer , CS559 Introduction to Computer Graphics, University of Wisconsin-Madison.	Spring 2019

SELECTED ADVISING EXPERIENCE

Haochen Shi , undergraduate mentee working on inverse kinematics and motion optimization algorithms. University of Wisconsin-Madison (now a graduate student at Stanford)	2020-2021
Olivia Hughes , undergraduate mentee working on human-robot interaction design and visualization. University of Wisconsin-Madison (now a graduate student at Georgia Tech)	2019-2020
Ziyad AlGhunaim, undergraduate mentee working on camera viewpoint optimization to incur depth perception cues. University of Wisconsin-Madison (now a software engineer at Google)	2019-2020
Oliver Liu , undergraduate mentee working on understanding human-robot interaction in virtual reality. University of Wisconsin-Madison (went on to	2016-2017

USC for graduate school)

ACADEMIC SERVICE

Session Chair, ICRA session Optimization-Based Motion Planning	2021
Review Editor, Frontiers in Robotics and AI	2021-Current
Reviewer (>100 papers) , ICRA, IROS, RSS, RA-L, TRO, HRI, CHI, SIGGRAPH, Transactions on Mechatronics, Frontiers, Humanoids	2017-Current
INVITED TALKS	
KavrakiLab , Rice University. <i>Methods and Applications for Generating Accurate and Feasible Robot-arm Motions in Real-time</i> .	2021
Talking-Robotics Series, <i>Methods and Applications for Generating</i> <i>Accurate and Feasible Robot-arm Motions in Real-time</i> . [video link]	2021
Northwestern University . <i>Methods and Applications for Generating</i> <i>Accurate and Feasible Robot-arm Motions in Real-time</i>	2020
AI and Its Alternatives for Shared Autonomy in Assistive and Collaborative Robotics Workshop, RSS 2019. Robust Human-Arm to	2019

Robot-Arm Motion Remapping in Real-time for Effective Shared-ControlTelemanipulation Methods**UW-Madison Computer Science Student Symposium.** Effective2019Methods for Robot Telemanipulation.

Naval Research Lab. Effective Methods for Robot Teleoperation.2017

SELECTED MEDIA COVERAGE

Techcrunch, This robot learns its two-handed moves from human dexterity

Tech Xplore, Shared control allows a robot to use two hands working together to complete tasks

Cosmos, The Science of Everything, Breaking: robot makes breakfast

Milwaukee Journal Sentinel, UW team designs robot hands that work together

TECHNICAL SKILLS

Programming: Rust, Python, C++, C, C#, Java, OpenGL, ROS, MATLAB, JavaScript, HTML, CSS, WebGL

Software: Blender, 3dsMax, Unity, MotionBuilder, Photoshop, Illustrator, Premier Pro, After Effects, Maya, MudBox, Office